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Optimal Control of Admission to a Multiserver
Queue with Two Arrival Streams

J. P. C. Blanc, Peter R. de Waal, Member, IEEE, Philippe Nain, and Donald Towsley, Member, IEEE

Abstract—The problem of finding an optimal admission pol-
icy to an M /M /c queue with one controlled and one uncon-
trolled arrival stream is addressed in this paper. There are two
streams of customers (customers of class 1 and 2) that are
generated according to independent Poisson processes with con-
stant arrival rates. The service time probability distribution is
exponential and does not depend on the class of the customers.
Upon arrival a class 1 customer may be admitted or rejected,
while incoming class 2 customers are always admitted. A state-
dependent reward is earned each time a new class 1 customer
enters the system. When the discount factor is small, we show
that there exists a stationary admission policy of a threshold
type that maximizes the expected total discounted reward over
an infinite horizon. A similar result is also obtained when
considering the long-run average reward criterion. The proof
relies on a new device that consists of a partial construction of
the solution of the dynmamic programming equation. Applica-
tions arising from teletraffic analysis are proposed.

I. INTRODUCTION

E consider an M /M /c queueing system fed by two

independent Poisson streams of customers with inten-
sities \, and \,. Customers of stream / will be referred to as
class i customers, i = 1, 2. The buffer has unlimited capacity
and the order of service is irrelevant as long as the service
discipline is not anticipative. The customer service demands
are independent and exponentially distributed random vari-
ables with finite mean 1/u.

Customers of stream 1 are controlled, in the sense that an
arriving class 1 customer can be either accepted in the system
or rejected on the basis of past and current queue-length
information. Customers of stream 2 are not controlled; all are
required to enter the queue. A reward g(k + 1) is earned
each time a class 1 customer is admitted when the queue-
length is k. Our objective is twofold: we want to find
admission policies for class 1 customers that maximize: 1)
the average discounted reward gained over an infinite hori-
zon; and 2) the long-run average reward over an infinite
horizon.
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Throughout the years, many authors have studied flow
control problems in the context of queueing systems, and a
comprehensive discussion can be found in the survey paper
by Stidham [22]. A standard approach in the control of
queueing systems consists of formulating the optimization
problem at hand as a Markov decision problem (see, e.g.,
[14], [21]) or a semi-Markov decision problem (see, e.g.,
[16]), from which the functional equation of dynamic pro-
gramming can be derived [4], [10], [20]. Then, the so-called
policy improvement algorithm (see, e.g., [14]) or the value
iteration algorithm (see, for instance, [8], [9], [12], [17])
may be used to determine the optimal policy (e.g., threshold
policy, switching curve). An alternative approach to dynamic
programming is to convert the Markov decision problem to a
linear program [10], [20] and to use results from the theory
of linear programming to determine the structure of the
optimal policy (see, e.g., [11], [18], [19]). In some cases,
direct arguments arising from performance analysis tech-
niques may also yield the optimal policy [13].

The contributions of this paper are the following: first, we
establish the optimality of threshold policies for fairly general
reward functions (in particular, g need not to be convex/
concave); second, these results are obtained in the presence
of a noncontrolled input stream which makes the optimization
problem more involved; third, we propose a new device for
extracting information from the optimality equation since we
have not been able to apply any of the classical techniques
listed above; last, we show that our model has interesting
applications in teletraffic analysis.

In Section II the problem is cast in the Markov decision
process framework. Section III addresses the discounted re-
ward control problem in the case where A, = 0, which will
turn out to be much simpler to analyze than the case where
N, > 0 (Section IV). In both cases, we show the existence of
an optimal threshold policy for small discount factors. The
optimality .of a threshold policy for the long-run average
reward problem is proved in Section V. Extensions of our
results to nongeometrically decreasing/nonpositive reward
functions are discussed in Section VI. Section VII contains
two applications arising from teletraffic analysis.

II. THE MODEL

The optimization problem described in Section I is now
formulated as a Markov decision problem. This formulation
closely follows that of Lippman in [15]. Let N :=
{0,1,2, -}, N*:=N - {0}, R:= (-, +), and
R, = (0, + ).
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‘Let ¢, be the time when the nth event occurs (arrival or
departure). Let U, € {0, 1} be the nth decision to be made (at
time ¢,, the nth decision epoch). If ¢, corresponds to the
arrival of a class 1 customer, then the controller may decide
either to accept (U, = 1) or to reject (U, = 0) this new
customer; otherwise, the decision is irrelevant since only
class 1 customers are controlled. In that case, we shall
assume by convention that U, = 0.

Let Q(¢) be the total number of customers in the system at
time #, including the customers in service, if any. We assume
that the sample paths of the process {Q(z), ¢ =0} are
right-continuous. At time ¢, the state of the system is repre-
sented by Z, = (Q(¢,), X,)eS:= N x {0,1}, where X,
is the number of class 1 customers seeking admittance.

When in state (k,1) a reward g(k + 1) is earned if the
customer seeking admittance is accepted. Let p, be the
departure rate when there are & customers in the system,
keN. Observe that u, = pmin(k,c) for all ke (cf.
Remark 2.1). We assume that the reward function g: N* —
R, satisfies the following conditions:

weg (k) < pyp g(k+1), fork=1,2,-,¢c-1;

(2.1)

g(k+1)<V¥g(k), fork=c,c+1,-, (2.2)
with ¥ €(0, 1). It is seen from (2.1) and (2.2) that g is
uniformly bounded on N* (say by a constant G).

Let us briefly discuss the conditions (2.1) and (2.2). Condi-
tion (2.1) is satisfied (in particular) if g is nondecreasing in
[1, ¢]. Condition (2.2) implies that g is geometrically de-
creasing. It is also worth noting that the restrictions we place
on g are particularly weak when ¢ =1 (M /M/1 queue),
since in that case we only require that g be geometrically
decreasing. In particular, no convexity assumption is re-
quired. The more general case when g is nonincreasing in
[c, ) (i.e., ¥ = 1) will be discussed in Section VI-B.

The process Z:={Z,, n=1} is a Markov decision
process with state-space S [20]. An admission policy is any
mapping u: S — {0, 1}, where u(z) = 1 (respectively, u(z)
= 0) indicates that the decision is to admit (respectively,
reject) the new customer when the system is in state z €.
We only consider stationary policies since it is well known
that nothing is gained by considering more general policies
(e.g., randomized, nonstationary, history-dependent policies;
for instance, see [16] or [20]). The set of all admission
policies will be denoted by % .

Our objective is twofold. First, we want to maximize over
U

Vs )= B T e r(Z,:0,)12, = 2,
nz

a>0 (2.3)

the expected total a-discounted reward gained over an infi-
nite horizon, for every initial state z €S, where r(z; a) :=
gk + Dl(ea=1, x=1) with z = (k, x). It is easily seen
from (2.3) that V_(z; u) is uniformly bounded on § X %
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by K, := (a+ N\)G/a) for every a > 0. Let V.¥(z):=
Supue-’l/ ch(z; u)'

Second, we want to find an admission policy that maxi-
mizes over %

>

1
Wiz, u):= liminf—E[
( ) Ttw T {n:0=t,<T}

l’(Z”; Un) l Zl = Z]
(2.4)

the long-run average reward gained over an infinite horizon,
for every initial state z € §. Observe that 0 < W(z, u) = \,G
forall (z,u)eS x %. '

Theorem 2.1 gives the dynamic programming (DP) equa-
tion that is satisfied by the optimal value function V.*. The
proof of this result can be found in Lippman [16, theorem 1].

Theorem 2.1: Let A, :={0,1} and A, ,:= {0} be
the action spaces when in state (k, 1) and (k,0), respec-
tively. Then, for every a > 0, V* is the unique uniformly
bounded solution in § to the DP equation

{r(z;a) +-ﬁf—(i—

V¥(z) = ma
(z) . o+ 0,(a)

aeAy .

-y Q(z’lz;a)Va*(z’)}, z=(k,x)eS (2.5)

z'eS

where Q(-|z;a) and §,(a) are the one-step probability
transition of the process Z and the transition rate out of state
z, respectively, given that the current state is z and that
action a is chosen. Furthermore, the control which selects an

action maximizing the right-hand side of (2.5) for all z € § is
optimal.

It is easily obtained from (2.5) (see [3] for details) that
(o + N+ w) VX((,0))
= MV (K, 1)) + MVE((k + 1,0))
+ Vi (k= 1,0)1{k = 1};
VA(k,1)) = max {g(k + 1) + V¥((k + 1,0))

Vi((k,0)} (2.7)

(2.6)

for all k€W, where A=\, + \,.
For ke, define

Vi((k,0)),
VE(k,0)) = VX((k - 1,0)),

k=0;

k=1.
(2.8)

As a consequence of the last statement of Theorem 2.1 and

(2.7), the optimal action u%(k) = u*((k, 1)) when the state
of the system is (k, 1) is given by

x¥(k) =

*

up(k) = H{xi(k+1) +g(k +1) >0},
‘ keN. (2.9)

Further, it follows from (2.6) and (2.7) that for every o > 0
the function x¥ is the unique bounded solution of the DP
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equation

—aZx*( + Nl (k)(

keN. (2.10)
Remark 2.1: All the results in this paper are seen to hold
if py, py,c -, pe_, are arbitrary numbers satisfying (2.1).

The assumption that u, = pk for k=1,2,---,c—1is
only made for the sake of notational convenience.

xE(k+ 1)+ g(k+ 1))

III. DiscouNTED REWARD PrROBLEM: THE
SINGLE-STREAM CASE

This section is devoted to the analysis of the single-stream
discounted problem (i.e., A, = 0). In that case, the DP
equation (2.10) reduces to

' -agjoxz(i) + NuE(k) (xX(k+ 1) + g(k+ 1))

xi(k)1{k=1} =0,

“The main result of this section is the following.

Proposition 3.1: The optimal «-discounted admission
policy u” is such that:

D ufk)y=1fork=0,1,---,c~1, a>0;

2) if0< a < ay:=u(l — ¥)/¥andifthereisan / < oo
such that (/) = 0, then u¥(k) = 0 for k= [.

Proposition 3.1 shows that for small discount factors the
optimal «-discounted policy is of threshold type, with a
threshold greater than or equal to c.

Proof of Proposition 3.1: We first prove 1) by induc-
tion on k. Substituting k¥ = 0 and k = 1 into (3.1) yields

keN, > 0.

(3.1)

— Uy

~ax¥(0) + NuX(0)(x*(1) + g(1)) =0, (3.2)
—a(x3(0) + x%(1) + Nuz(1)(x(2) +£(2))
- mxy(1) =0. (33)

Subtracting (3.2) from (3.3) yields
A (1) (x5(2) +2(2)) = Mg (0)(x5(1) + (1))
= (O‘ + ”’l)x:(l)‘

If we assume that u}(0) = 0, then since ug(1)(x3(2) +
£(2)) = 0 [see (2.9)] we can write

(@ + ) x5(1) = 0. (3.4)

However, because u*(0) = 0, it follows that 0 = x7(1) +
g(1) > x¥%(1). But according to (3.4), x(1) is nonnegative
which results in a contradiction and therefore u*(0) = 1.

Assume now that u%(0) = u*(1) = -+ =ul(I-1) =1
for / < ¢ and let us show that #%(/) = 1. Substituting k = /
and £k = /4 1 into (3.1) and subtracting the first equation
from the second one, yields

NuE(T+ 1) (xE(1+2) + g(1+2))
NS (D) (x5(1+ 1) + g(1+ 1))

= (a+ ) x3(0+ 1) = pxg(l). (3.5)
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If we assume that #5(/) = 0, we then deduce from (3.5) that
(o + ) X5(1+ 1) — puxi(l) = 0

since wi(/+ D(x¥(I+2)+g(l+2)=0, cf. 2.9), or
equivalently that

(@ + me)(xa(+ 1) + (1 + 1)) = w(x5(0) + 2(1))
- g(l + 1)(0‘ + ) + P"Ig(l) = 0. (3'6)

By noting now that x*(/ + 1) + g(/ + 1) < 0 (since u%(/)
= 0 by assumption), —(x*(/) + g(/)) < 0 (since u*(/ - 1)
= 1 by assumption) and —g(! + Dy, + p,€(1) < 0 from
2.1), we see that the left-hand side of (3.6) is strictly
negative, which gives a contradiction. Therefore, u*(/) = 1.

We also prove 2) by induction. Fix « such that 0 < o <
ay. Let [ =c be such that u%(/) = 0. This implies that

XU+ 1)< —g+ 1.

Define x:MN — R as

*(k)
_az

k=0,1,--,1;

x(k) =
() k=1+1.

(3.7)

x(i)/(a + cu),

Note that the expression for x(k) for the case k >/ is the
recursion obtained from (3.1) by setting u¥(k) =0 for
k > 1 (i.e., always reject an arriving class 1 customer when
the queue-length exceeds /).

We prove that x(k) < —g(k) for kK >/ by induction
on k.

Basis Step: Let k = [+ 1. From the definition of x we .
have

x(1+1)

—aiz::()x(i)/(a+cu),

I

e X0 e ),

(ax®(1+ 1) = Nuh(1+ 1) (x%5(1+2)
+g(I1+2)) + cpxi(l+1))/(a + cp),
=x¥(+1),

= -g(l+1).

The last two steps follow from the fact that u*(k)(xX(k +
1)+ g(k + 1)) = 0 for all keN [cf. (2.9)] and the fact that
u*(l) = 0.

Inductive Step: We assume that x(k’) < —g(k") for k’
=l+1,/+2,---, k. We show that x(k + 1) = —g(k +
1). We have [cf. (3.7)]

x(k‘+1)"= —ax(k) —az ]/(a+cu)
(—ax(k) +
cux(k) /(e + cu),

—cug(k)/(a + cu),
=< —g(k+1)

(o + cp)x(k))/(a + cn),

IA

. (3.8)
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by the induction hypothesis, the assumptions on g, and the
condition on «. In particular, (3.8) shows that | x(k)| =
(ep/(a + cp) ™! x*()| = 2K, forall k =1+ 1, where
the bound follows from the definition (2.8) together with the
uniform bound on V_* (see Section II).

We have thus found a uniformly bounded function x that
when substituted for x¥ in (3.1) satisfies that equation.
Therefore, x* = x since (3.1) has only one uniformly
bounded solution, which in turn implies that x*(k) + g(k)
=< Ofor k> /and a €(0, ). This concludes the proof. B

The next result tells us that the threshold is finite.

Proposition 3.2: For every a € (0, o), the smallest inte-
ger [ such that u*(/) = 0 is finite. Moreover, / is uniformly
bounded in « for all « small enough.

An immediate corollary of Propositions 3.1 and 3.2 is that
for every fixed o € (0, ) the integer inf {/ = ¢: u*(/) = 0}
is the optimal threshold. :

Proof of Proposition 3.2: The proof follows from
Lemma 4.3 in Section IV by letting A, = 0 (see also Remark
4.2). A direct proof is also available in [7, lemma 4.5.4]. B

The methodology used in the proof of Proposition 3.1 does
not fall into any of the categories that were reported in
Section I. This method—first proposed by de Waal [6],
[71—is based on the construction of an intermediate function
(say f) that we suspect to be the optimal value function [here
f=x; cf. (3.7)]. If we can show that f is bounded and
solves the DP equation, then the existence of a unique
bounded solution to the DP equation enables us to conclude
that f is indeed the optimal value function. This method has
also been applied with success by Altman and Nain [1] for
“controlling the vacations of the server in a Markovian queue.
Therefore, we remark that the importance of the result lies
not as much in the optimality of threshold policies but rather
in the method of proof.

The next section shows that this method also applies to the

case where A\, > 0, although this case differs from the

single-stream case in an essential way: in the two-stream
case, the number of customers in the system is never bounded
from above regardless of the admission policy for class 1
customers. This fact makes the analysis of the two-stream
case much more involved.

IV. DiscounTED REWARD PROBLEM: THE TWO-STREAM
CASE

This section presents the analysis of the discounted prob-
lem with two streams of customers. Recall that only the
stream of class 1 customers is controlled. Again, our objec-
tive is to find an admission policy that maximizes the dis-
. counted cost function (2.3).

We first introduce some notation and state some prelimi-
nary results. Let

g N - Via+ e+ 0) - 4hen )
1 o= ZM .
be the smallest zero of the polynomial (in #) M ¢2 — (o + cp
+ M)t + cp. Denote by §, the other zero and observe that
0< B, <1<p, forall o> 0. Assume now that N\, < cp.

By noting that 3, = 1 when o = 0 and that the mapping
o = f, is strictly decreasing in [0, +o0), we see that there
exists «; > 0 such that

B>V

(4.2)

for o €(0, o)), where ¥ was introduced in (2.2).

In the remainder of this section, we shall assume that the
reward function g satisfies the following additional condi-
tions (see Remark 4.1):

g(k)y=g(k+1),

The following result holds (see Remark 4.2).

Proposition 4.1: Assume that N, <cp and fix ae€
0, o). If there exists a finite integer m- = 0 (that clearly
depends on «) such that the set of equations

fork=1,2,---,¢c—- 1.

(4.3)

0= —agkoy(i) +N(y(k+1) + g(k+ 1))

+My(k+ 1) = pey(k),
m+c
0=-ay y(i)+Ny(m+c+1)
i=0
—cuy(m+c); (4.5)
O=y(m+c+1)-B8,y(m+ec) (4.6)
has a solution that satisfies

y(k) +g(k) >0,
yim+c+1)+g(m+c+1)=<0

then u¥(k) = 1{k <m + ¢} for keN.
Proof: Let m = 0 be such that (y(k))F ¢+ satisfies
(4.4)-(4.8). Define x: N — R as :

) y(k),
x(k) = Bix(k—-1),

with /:= m + c¢ (see the comments below).
We prove that x(k) + g(k) = 0 for k > [ by induction
on k.

Basis Step: Let k = |+ 1. From the definition of x we
have ’

O<k<m+c; (44)

forl<sk=m+c; (4.7)
(4.8)

k=0,1,"",1;

4.9
k=1+1 (49)

x(1+1) = 8,x(1),
=y(l+1),
= -g(l+1)

from (4.6),

from (4.8).
Inductive Step: We assume that x(k’) + g(k’) < 0 for

k' =1+1,142,---, k. We show that x(k + 1) + g(k +
1) = 0. We have [cf. (4.9)] '

x(k+1) =B,x(k),

< —B,g(k),  from the induction hypothesis,
< -Vg(k), from(4.2),
< -glk+1)

from (2.2). Consequently,

x(k) +g(k) <0, fork>1  (4.10)
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By combining this result together with the definition of y(k)
for 0 < k = m + ¢ + 1 and the definition of (,, it is easily
seen that x satisfies the DP equation (2.10).

On the other hand, a direct inspection of (4.9) indicates
that | x(k)| < maxy.,<,{]|y(i)|} for all keN. Conse-
quently, x = x* since (2.10) has a uniquely uniformly
bounded solution on N, which in turn implies that x%(k) +
g(k)>0for 1 <k=<m+ c[cf. 4.7), 4.92)] and x¥*(k)
+g(k) = 0for k= m+ ¢ + 1 [cf. (4.10)]. This concludes
the proof. - ]

Proposition 4.1 contains an existence result which makes it
already quite interesting. Indeed, if one can show (for in-
stance, numerically) that the finite set of equations
(4.4)-(4.6) has a solution that satisfies (4.7)-(4.8), then
Proposition 4.1 says that the optimal discounted policy is a
threshold policy. In other words, the infinite system of
equations (2.9), (2.10) has been reduced to a finite one.

Let us now comment on the definition of x in (4.9) since
this is the key point of our method. Assume that u*(k) = 0
forall k = ! = c. Then, (2.10) reduces to

¥ x5 (i) 4 hxt(k 4 1)
i=0

—cepxi(k)1{k=1} =0 (4.11)

for k = I. Substituting & for k + 1 in (4.11), then subtract-
ing (4.11) from this new equation, yields for & = /

Mxg(k+2) = (a+ N+ cu)xi(k + 1)
+ cux¥(k) =0. (4.12)

It is known that the general solution to the second-order
difference equation defined by (4.12) is

x¥(k) = aBf + bB% (4.13)

for k = I, where we recall that 8, and 8, are the roots of the
(characteristic) equation N\,2% — (a + cu + N)t + cp = 0.
The coefficients ¢ and b are easily identified by plugging
(4.13) into (4.12) (see [3]). Because x* must be uniformly
bounded on M, (4.13) and (, > 1 necessarily imply that
b =0, or equivalently, that x*(/ + 1) = 8, x%(/). This last
relation in turn entails that @ = x*(J)/ Bl. In other words, if
the optimal policy is such that u*(k) = Oforall k =/=c,
then necessarily

xa(k) = Bixa(k=1)

for kK =/ + 1, which is nothing but the definition of x(k)
given in (4.9) for k =/ + 1.

It could be tempting to replace y(k) in (4.9a) by x%(k) in
direct analogy with the definition (3.7a) of x in the single-
stream case. However, we are not allowed to do it because
there is @ priori no reason why the extra condition (4.6)
should hold for x¥.

The next step towards the optimality of a threshold policy
is to establish the existence of a solution to (4.4)—(4.8). This
is done in the following proposition.

Proposition 4.2: Let ae(0, o). Then, there exists a
finite integer m = m*, m* = 0, such that the unique solu-
tion to the set of equations (4.4)-(4.6) satisfies the con-
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straints (4.7), (4.8). Further, m™ is uniformly bounded as
al0.

The proof of Proposition 4.2 relies upon the following
three lemmas, of which proofs are given in the Appendix.
We introduce the following notation: for any m =0,
(Xt NPT will denote the unique solution to the set of
equations (4.4)-(4.6) (the uniqueness of the solution is dis-
cussed at the beginning of the Appendix).

Lemma 4.1: The unique solution (x.(k))§% to the set of
equations (4.4)-(4.6) when m = 0 is such that

x.(k) + g(k) >0,

Lemma 4.2: Let C,,, m = 0, be the condition on the
model parameters A\, Ay, , C, o, (g(k))7F'+¢, which is
equivalent to x,, . (m+1+c)+gm+1+c)=<0. If
none of the conditions Cy, C,,---,C,,_, holds, m =1,
then x,, .. (k) + g(k) >0 for k=1,2,---, m + c.

Lemma 4.3: Let € (0, o). Then, there exists m, 0 <
m < +oo,suchthat x,,, (m+c+ D +gm+c+1)=<
0. Moreover, m is uniformly bounded as «{0.

Proof of Proposition 4.2: Let m* be the smallest
nonnegative integer such that x,.,.(m* + ¢+ 1) + g(m*
+ ¢+ 1) =0, where the existence of m* is ensured by
Lemma 4.3. If m™ = 0, then the proposition follows from
Lemma 4.1, whereas if m™* > 0 the proposition follows from
Lemma 4.2. The second part follows from the second state-
ment of Lemma 4.3. |

Combining Propositions 4.1 and 4.2 yields the following
final result.

Proposition 4.3: Assume N\, < cu. Let g be a reward
function such that conditions (2.1), (2.2), (4.3) hold simulta-
neously. Then, for every o€ (0, ), there exists m’,’; < o0
such that u*(k) = 1{k < m”, + ¢} for all ke N. Moreover,
there exists «,, 0 < o, < «;, and a constant M > 0 such
that m* € [0, M] for all « € (0, a,).

Before concluding this section, let us briefly address the
numerical computation of the optimal threshold m* + ¢. The
standard way for computing m* is to solve the system of
equations (4.4)-(4.6) for m = 0,1,2, --- until we end up
with a value of m such that the constraints (4.7), (4.8) are
met. Then, m’Z = m. However, it is much more efficient
both in terms of computation time and memory space savings
to determine m* from the inequality (A.50) in the Appendix
by using the recursions (A.22) and (A.23). More precisely,
for every ae (0, o), m% will be the smallest integer such
that (A.50) holds.

Remark 4.1: The assumption that g is nonincreasing in
[1, c] is only used in the proof of Lemma 4.1. We conjecture
that Lemma 4.1 holds without this extra assumption on g
(we have only checked it for ¢ =2 and ¢ = 3, which
implies, in particular, that Proposition 4.3 holds for ¢ < 3
without this assumption).

Remark 4.2: Proposition 4.1 still holds if A, =0 pro-
vided that B, is replaced by lim, ,, B8 = cp/(a + cp).
Moreover, when A, = 0 Lemma 4.1 holds without the extra
assumption (4.3) (see the comment at the end of the proof of
Lemma 4.1), which in turn implies (see Remark 4.1) that the
same is true for Proposition 4.1.

forl<k=<c. (4.14)
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V. THE AVERAGE REWARD CONTROL PROBLEM

In this section, we shall discuss the long-run average
reward control problem. Since V,(z; u) is well defined for
all zeS, ue % (see Section II), we know from a Tauberian
theorem [23, pp. 181-182] that

W(z;u) < limlinfona(z; u) (5.1
al0

for all zeS, ue %. Further, if W(z; u) exists as a limit,

then lim 4 @V, (z; u) exists as well, and

W(z;u) = li{réaVa(z;u) (5.2)
a
forall zeS, ue %.
Assume first that 0 < A, < cu and that the assumptions in
Proposition 4.3 are fulfilled. Let z be fixed in S. For every
a € (0, a,), we have from Proposition 4.3 that

wh(j) =1{j<mi+c}

for j=0 with 0=<m’ < +o. Consequently, for ae
(0’ 052)

aV,(z;u) < aV,(z; u})

(5.3)

forall ue %.

Let {¢;}7 be a sequence in (0, a,) such that ¢;10 as iToo.
Since m’; €[0, M] for « €(0, a,) by Proposition 4.3, and
since m” is an integer, there exists J < + o and a subse-
quence of {€;}T, denoted as {e;}T, such that m is a
constant (denoted as m*) for all j = J. Define u*( _]) =1{Jj
<m*+c¢}, jz0.

If we now take the limit in (5.3) along ¢;, jToo, we get
from (5.1) that for every policy ue %
W(z;u) < 1ir.r;infejV;,(z;u*). (5.4)
Jloo /

By observing now that Z (see Section II) is an ergodic
Markov chain when the threshold policy ™ is used, we may
deduce from Chung [5, section 1.15] that W (z; u) exists as a
limit. Hence [cf. (5.2), (5.4)] W(z;u) = W(z;u™) for all
zeS, ue .

For A\, = 0, the same result can be shown by usmg Propo-
sitions 3.1 and 3.2. However, (4.3) is not needed in that
case.

For N, = cu, it should be clear from lim,,, g(k) =0
[cf. (2.2)] that W(z; u) =0 forall ue %.

The results of this section are collected in the following
proposition.

Proposition 5.1: If \, = 0, then there exists a threshold
policy with finite threshold that is average optimal over the
set % of all admission policies. The same result holds if
0 < M\, < cp provided that g is nonincreasing in [1, c]. If
N\, = cu, then all admission policies are average optimal.

VI. EXTENSIONS OF THE MODEL
Two extensions of the definition of a reward function will
be discussed in this section.
A. Nongeometrically Decreasing Rewards

Let g:N* —» R, be a mapping that satisfies both condi-
tions (2.1), (2.2) with ¥ = 1. Further, we assume that there
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exists A > 0 such that

sup kg (k) < A.
kel

(6.1)

Proposition 6.1: Proposition 5.1 holds under the forego-
ing assumptions.
Proof: Let e€[0,1) and z€S. Define g,:N* >R,
such that

g(k) =

g(k), fork=1,2,-+,c;

g(k)(1-¢)",

fork=c+ 1.

(6.2)

Let W_(z, u) be the long-run average reward gained over an
infinite horizon when the reward function g, is used [cf.
(2.4)]. Observe that W,(z, u) is uniformly bounded on [0, 1)
X 8 X U (by MG) and that Wi(z, u) = W(z, u).

Since g, satisfies conditions (2.1), (2.2), we may deduce
from Proposition 5.1 (provided that g is nonincreasing in
[1, c]) that there exists an integer /,, ¢ </, < o, such that

Wz u,) = W(z;u) (6.3)
for all ue %, where u (k)= Uk <1), keN.

Assume that for every policy ue %, the mapping e -
Wz, u) is right-continuous at e = 0. Call this assumption
H. Let {¢}; be a sequence in (0, 1) such that ¢;{0 when
iToo. Since /, lies in a compact set for e small enough [see
(A.54)], there exists a subsequence {e;}; of {¢}; and an
integer J such that l = | for all j > J. Consequently, for
i>J,

W (z,u) =W, (z,u) (6.4)

for every u e 9. Letting now j go to o in (6.4), we have
from assumption H

W(z,u) = W(z,u)
for every ue %, which proves Proposition 6.1.
It remains to show that assumption H is valid. Let u be an
arbitrary policy in %. The following will be shown: there

exists 6, > 0 such that 8, converges to 0 when e goes to 0,
and such that

W(z,u)—8,< W,(z,u) < W(z,u)
for e €[0, 1), from which H will follow.
First, observe from (6.2) that the second inequality in (6.5)
is trivially true since ¢ = W,(z, ) is nonincreasing in [0, 1).
Let us show that the first inequality is also true.
We have (with Z| = z)

(6.5)

1
W(z,u) = liminfEu[——
TTeo {n:0=<1,<T}

+g(Q(1,) +1)
- (X, =1,U,= 1)],

2 r(2Zy Un)]
{n:0=<t,<T}
1
—A&E[ > 1},
T {n:0=r,<T}
Wiz, u) -,

{e(o(z,) +1)

((1 - E)Q(tn)+1

1
lim inf {Eu[—
Tteo

v



BLANC ef al.: OPTIMAL CONTROL OF ADMISSION TO A MULTISERVER QUEUE

where (6.6) follows from (6.1) and from the inequality
1-0-e)/iseforee(0,1), ieN* |
Proposition 6.1 yields the following interesting corollary.
Corollary 6.1: Assume that ¢ = 1 and that condition 6.1)
holds. Then, for any nonincreasing reward function g: N* —
R, there exists a threshold policy that is average optimal.

B. Nonpositive Rewards

Let g:N* — R be a mapping such that (2.1) holds, and
further .

glk+1)<Vg(k), fork=c,c+1,--,C-1;

(6.7)
g(k) >0, fork=1,2,---,C~1; (6.8)
g(k) =0, fork=C (6.9)

where C is an arbitrary constant greater than or equal to
¢+ 1. The above conditions generalize (2.1), (2.2) since
they reduce to (2.1), (2.2) when C = oo.

We also assume that Assumptions 2 and 3 in [15] are
satisfied (these assumptions ensure the validity of Theorem
2.1 for nonuniformly bounded rewards).

Then, it is seen that the results contained in Sections III-V
still hold if (2.2) is replaced by the new set of conditions
(6.7)~(6.9). In that case the optimal threshold lies in [¢, C ~
1]. This follows from (A.54).

VII. APPLICATIONS

In this section, we present two applications of our results
arising from the context of teletraffic analysis.

Example 1: Assume that a deadline D, > 0 on service
time completion is associated with the sth arriving customer
of class 1, n = 1. More precisely, if the nth customer has
arrived at time ¢, then we want this customer to be served by
time ¢ + D,. Customers that miss their deadline are not
discarded, meaning that once a class 1 customer gets ac-
cepted in the system then it is served. This is a typical
situation in many data networks where high level protocols
are concerned with admission while low level protocols are
concerned with scheduling and transmission. In many cases,
the lower level protocols do not have access to deadline
information whereas the high level protocols do.

This model can also serve as an elaborate version of the
queueing model for call request processing in a telephone
exchange as presented in [7, chapter 4]. Customers of type 1
represent the requests from subscribers that are connected
locally to the switch, while customers of type 2 represent call
requests that are forwarded from other switches. The latter
are always admitted to the exchange because of the process-
ing time that is already spent on them at the forwarding
switch. The deadline of type 1 customers corresponds to the
limited patience of the subscriber when they are waiting for
the completion of their call.

We assume that {D,}, is 2 sequence of i.i.d. random
variables, independent of the input and service times pro-
cesses. The reward function g is defined to be the probability
that a new class 1 customer meets its deadline given there are
k customers in the system, including itself, upon its arrival.
With this definition, it is seen that the long-run average
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reward gained over an infinite horizon [see (2.4)] provides a
measure of the goodput of the system, that is the rate of class
1 customers that complete service before their deadline.
With the definition of g in mind, we observe that (2.1)
holds since g(k) = P(D < S) for k < ¢, where S (respec-
tively, D) denotes a generic random variable for the service
time (respectively, deadline) of a customer.
" In the case that P(D < x) = 1 — exp(—~+yx) for x =0,
v > O (exponentially distributed deadlines), an easy computa-
tion shows that

p/(m+7),
g(k) = { (r/(p+7))

“(enf(en+7)) ",

k=1,2,---,c¢;
k=c+1,c+2,---.

It is also easy to see that the above expression for g(k)
satisfies both conditions (2.1) and (2.2) with ¥ = cu /(cp +
Y)-

In the general case where the deadline distribution function
is arbitrary, then g(k) cannot be computed in closed form.
However, many interesting deadline distribution functions
are such that condition (2.2) is met. More precisely, we have
the following result.

Proposition 7.1: The mapping g satisfies condition (2.2)
if one of the three following conditions is fulfilled:

1) the deadlines are deterministic;

2) the deadlines have a failure rate that is bounded away
from O by a strictly positive constant;

3) the deadlines have an Erlang distribution.

The proof of Proposition 7.1 can be found in [7]. Note that
condition 2) in Proposition 7.1 is satisfied by a large class of
distributions, including the exponential distribution, subsets
of the class of Gamma distributions, and truncated normal
distributions (see [2, sect. 5]. The mapping g also satisfies
the condition (2.2) if the deadline distribution is a finite
mixture of distribution functions that satisfy any of the condi-
tions of Proposition 7.1.

If one of the conditions of Proposition 7.1 is satisfied, then
the goodput of the system is maximized by rejecting a class 1
customer if the queue size exceeds a (finite) threshold upon
its arrival. This follows from Proposition 5.1.

Example 2: A classical problem in teletraffic analysis is to
find a tradeoff between response times and throughput. Let us
illustrate this phenomena through the following simple model.

Define g(k):=r — w(k), k=1, where r>1/p and
where w(k) is the mean sojourn time of a customer that
enters the system when the queue-length is k& — 1. Conse-
quently, we must find a tradeoff between accepting all the
customers which would imply high throughput but high re-
sponse times, and rejecting most of the customers which
would yield low response times but also low throughput.

For the long-run average reward criterion this formulation
is equivalent to the one where a reward is gained for every
admitted customer and holding costs are payed per time unit
for every waiting customer (cf. the dynamic flow models in
[22]). The formulations differ in the sense that in our model
the total expected holding costs of each customer are incurred
at the moment of his arrival.
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Let us show that the reward function g satisfies conditions
2.1), (6.7)~(6.9). Because w(k) = 1/pfor k=1,2,--+,c,
we see that condition (2.1) is satisfied. Define C := inf {k =
1, g(k) < 0} (note that C = ¢ + 1 since g(c)=r—1/p
> 0). Since w(k) is nondecreasing in k, we immediately
deduce that condition (6.9) holds, and that condition (6.7)
also holds with ¥ := max .., < c_, 8(k + 1)/ g(k).

Therefore, the results in Sections III-V apply to this
model, which shows the existence of optimal threshold poli-
cies for both the average discounted reward criterion and the
long-run average reward criterion.

APPENDIX

We first introduce some notation and establish some inter-
mediate results.
Define the matrices

a, o
~u; a+A
0 TR+t

‘ 0 0

Mj(ay, by, ¢o) =
0 0
0 0
for 1 =j <k, and
. a b
M(aq, by, ¢) = ( _Zj cg) (A.2)

for j= 1, where a,, b,, and ¢, are arbitrary constants
[recall that p; = pmin (j, ¢)].

Let | M | be the determinant of any matrix M, with the
convention that | x| = x if x is a scalar number. It is easily
seen by using an induction argument in £ that

| M{(a,, by, co)| >0

when a4 >0, by >0, and ¢, >0, for 1 <j < k.

Let us show that the set of equations (4.4)-(4.6) has a
unique solution for all m = 0. Let x,,.(k):=y(k), k =
0,1,---, m + ¢ + 1, in Proposition 4.1.

By substituting (4.6) into (4.5), by eliminating X, (0)
from (4.4), by using (4.5), and finally by using the definition
of B, we obtain the matrix equation

(A.3)

ApreXmic = _)\lg_m+c (A4)
where
Xmie = (xm+c(1)" T xm+c(m + c))T§
Bmic= (8(1),++, g(m+ )
Mr}1+c~1(w + N\, cp /By
Apci =18 =N, N +cr/By), ifm+c>1;
ifm+c=1.

N+ cp /By,

By noting that cu/B8, — N, > 0 (since B, < 1, cf. 4.1) for
a>0,and \, < cp), we see from (A.3) that | 4, | >0
for m = 0. Therefore, the set of equations (4.4)-(4.6) has a
unique solution for all m = 0.
We start with the proof of Lemma 4.1.

Proof of Lemma 4.1: For m = 0 rewrite the equation

(A.4) as
Alfx.+g]=[A.-NL]g.:=h,

where I, stands for the identity matrix and h, :=
(h 1), -, h(c)T. It follows readily that

) = =mea (= D1k > 1) + 23 g(0)

C

+NMg(k) + (ﬁ‘: )g(c) (A.5)

o o o b,
o e o o b,
o+ A
THis2
! : (A.1)
o
@+ N\ o
O _”'k—l a+)\ bO
0 0 “He  Co

for k=1,2,---,c.
By developing the determinant which forms the numerator

of x.(J) + g(J) to the jth column we get after a tedious but
easy computation

(x.(J) +2(N)] Al

= AZ S ) Ay | D e
=S kot ‘(k-1)!lf
J (J'__ )v
— A, Jj—k
ICAEI" k 1] (k__ 1)'
(4
- 2 R (DN VY (A.6)
i=j+1
for j=1,2, -+, ¢, where
M_(a+\ cu/B,
Al = Mo N +en/By), iflsj=<c-1;
N+ /By, if j = c;
L1, ifj=c+1;
o Mg—l(a’cﬂ/ﬁl
Véi=9§ =N N +ceu/By), ifl<j<c-1;
/By =Ny, if j=c;
(M}_(a+Na,a+)), ifk>1;
Api= g4, ifk=1 A7)

1, if £k =0.
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With the above definitions the following recursions can easily
be established for j = 1,2,---,¢c — L

| A2l = (a+ N AT +jp] VT,
|VZ1 = a| AN +jel VT

(A.8)
(A.9)

Repeated application of the recursions (A.8) and (A.9) leads
to
- . c . . .
| A =X+ 3 NVHV,
i=j+1
j=0,1,”',c—1_ (A.lO)

Introducing (A.10) into (A.6) finally yields for j =
1,2,--,¢,

(50) + 201 Al = £ 1,
froper s 5 [hdi) - v

As we have seen before | A.| >0, [A,_;| >0 for k =
0,1,---,c—1, | V)| >0for i=1,2," -, c. Further, the
assumptions on g imply that: a) h(k)>0 for k=
1,2,+-, ¢; and that b) (k) — h (i) > 0 for k < i. Hence,
x(J) + g(j) >0 for j=1,2, -+, ¢, which concludes the
proof of Lemma 4.1 [if N, = O then it is easily seen that a)
and b) are satisfied without the additional assumption (4.3)].
: n
Proof of Lemma 4.2: Let us show that the lemma is
true if
xm+c(0) > xm—l+c(0) (A'll)
when condition C,,_,, m = 1, is not satisfied. We use an
induction argument.
First notice that [cf. (4.4), (4.5)]

Xmee(K)

_ azfgolxmh:(i) - )‘lg(k) + ”k—lxm+c(k - 1)

x ’
l<k=m+c; (A.12)
_ az;l;cxm_,_c(l‘) + I"m+cxm+c(m + C) , (A.13)

N

foral m=0, c=1.
Basis Step: Assume that C, is not satisfied and let us
show that x,, (k) + g(k) >0 for 1 =k <1+ c. From

(A.12) and the inequality (A.11) (with m = 1), it is readily

seen that

Xi(k) >x(k), forO<k=c (A.14)
which implies from Lemma 4.1 that x,..(k) + g(k) >

x (k) + g(k) >0 for k = 1,2,---, ¢
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Further [cf. (A.12), (A.13), (A.14)]
X4(1+¢)
_ aZf=oX1+c(i) - )\]g(l + C) + P"cxl+c(c)
x ;
S 2ZizoXe(d) ~ Mg(l +¢) + pexe(c)
x )
_hx(1+¢) = Ng(l+¢)
A

and so

Xi4o(l+c)+g(l+¢)

> %(xc(l +c)+g(l+¢)>0

from the assumption on C,.
Inductive Step: Assume that none of the conditions
Cy, Ci,0 o+, Cp_yy m = 2, is satisfied and that

xm-—l+c(k) + g(k) > 0’

forl=k=m-1+c. (A.15)

Let us show that x,,, (k) + g(k)>0forl<k=s=m+c
if C,_, is not satisfied. It is easily seen from (A.11),
(A.12), (A.13), that

xm+c(k) > xm—1+c(k) 4

forl<k=m-1+c; (A.16)

Xmic(m + )

)\me——1+c(m + C) - xlg(m + C)
X .

Consequently, x,,, (k) + g(k)>0forl<k=<m-1+
¢ from (A.15) and (A.16), and X, .(m + ¢) + g(m + ¢)
> 0 from (A.17) and the assumption on C,, _,.

We are therefore left to prove that (A.11) holds if the
condition C,,_, is not satisfied, m = 1. More precisely, we
shall show that

[xm+c(0) - xm—l+c(0)] I Am+c|

A cu
)\m—l-kc -
[5 )

1
o3

>

(A.17)

[ xpmerse(m+c) +g(m + )] (A.18)

forall m = 1, if C,,_, is not satisfied (i.e., x,,_,,(m +
¢) + g(m + ¢) > 0), which will prove (A.11) since
| Aprcl > 0and cu/B; — N\, > 0. The proof decomposes
into three steps.
Step 1: Computation of x,,_,..(m + ¢) + g(m + ¢).
Recall the definition of A, [cf. (A.7)]. Let

My _(a+ N g, Bi)s ifk>1;
Ye=qu, ifk=1; (A.19)
0, if k =0.
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With these definitions, we easily obtain that Further, (A.26) and (A.29) imply that for m = 0
Al = («+ N A | +al Y |; (A20) | Apmecl = (A |+ 1Yoy 1) | Ay
Yl = pe([Apor | + | Yy ) (A.21) - NY._\||4,]. (A.31)
for k = 1, from which we deduce that Introducing the matrix
Myl gy | = me Ag| = a| V|5 (A.22) i M (a+ XN a,a+ ), ifmz=1;
)\ﬂklyk—ll=(a+>\)|Yk|“l’«k|Ak| (A-23) mrl a+ A, ifm=20
for k= 1. we have similarly to (A.31)

By means of the recursion 1
IAm+cl = (lAc—ll + | Yc—l |)]Am+1|

X m+c)| A, = - m+c)|lA,,_
m:i( ) Al 1ug( i’ A el ) ~ MY | 1A, (A32)
aeXmae_(m ~ 1 + - , = .
! ) Al i for m = 0, with the convention that | A,| = 1.
which follows from (A.4) we obtain for m = 0, Using (A.32), (A.25), and the relation x,,_, . (m +¢) =
BiXm-14c(m—1+c¢) [cf. (4.6)], we finally obtain for
xm+c(m + C) I Am+c| mz=1
m+c m—1l+c A
=-N2 g T w (A.24) [X’"“+C(m+c) +g(m+c)]| m-1+cl
j=1 i=j -1
- 1) —g(m+C)IAm reel = NBi(ep)”
-1\
= =N(ew)” Zg(f) WA (et o
(-n" ( N A
G-nt”
“ j 1
-\ i+ ¢)(ep)" | Apy, A25 L0 ~1~j
ljz:og(j )( #) | C+j—1| ( ) ~ N8B, Zog(J"_ C)(Cp,)m 1~j
j=
where by convention we have assumed that Z}Ll = 0. '[(|Ac—1| + Y., DI ]ij| -\ Y| |]\j_1 |]
Next, we introduce the new quantities
(A.33)
- My cr(o+ N cn/By ] Step 2: Computation of X, (0) ~ x,,_ . .(0).
Ay = =N, N+ ocu/B), itmz=1; In order to describe x,,, .(0), we introduce the matrix
N+ ocu /By, ‘ it m=0; .
Mr.;z+c—-l(a’ C#/Bl
Mf o (o, cn/B, Viee = Mo N+ eu/By), iflsj<m+ec:
Vper =94 =N, N+cu/B), ifm=1; cu/By ~ Ny, if j=m+c.
cu/By — Ny if m=0.
\ : By straightforward manipulations with the determinants, it
Then, for m =0, c =1, can be shown that
A A A + |7, A .26
I m+c| l c— ll I m+1' | ll | +1| ( ) xm+c(1)| Am+c| - _)\lg(l) | m+c| )\ I +c!
For ¢ =1, the proof of (A.26) is trivial by noting that
A, . ,=A,,  ,whenc=1,A;=1[cf (A7)]and Y, =0 e j2
[cf. (A.19)]. For ¢ = 2, the proof follows from Lemma A.1. N Z gINVoiel,  mzo0.

For these new matrices, it is easily seen that for m = 0 . ) ]
_ S B From this relation, it follows readily by using (A.12) with
| Apir| = (e + N A, +culVy|; (A27) k=1 that

A m+e
| Vi = | Ayl +cnl ] (A28) x . (0)]A,..|= —a‘- _Z g(NN Vel

J=
from which it follows that for m = 0 m=0. (A.34)
NVt = 1 At | = N A4, (A.29) lI:“rom the definitions of the matrices ¥, and V,,, |, ._; we

. . . ave ;
A =(a+AN+c A —cuh| A4 .

| Apial = ( W Apmir] = cun 4,,] (A30) Viee= Vmotrees (A.25)

provided | Ay| = 1and |Vy| =1 — N8, /(cp). for ¢ < j < m + c. Further, by applying again Lemma A.1
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to Vi, it is easily seen that
| m+c| = |Wcj—1| |A~m+l| + ‘Z 1”

forl=sj=<c-—1, m=0, where

mer] (A.36)

oM (a0 + N, iflsj<c-2;
" e, if j=c—1;
iflsj=<c-2;
ifj=c—1.

7/ = {Mcj—z(a’ Ko I"'c-l)’
c—1°"" "
c—12

These matrices satisfy the recursions
]le=(a+)\)]Wj_1]+oz|Zg_1|; (A.37)
| 24| = cu(1 WL, | + 12L41) (A.38)

for j=1,2,---,c— 1, c = 2, while | W°| = aand | Z¢|
= cp for ¢ = 1. With the aid of relations (A.35) and (A.36)
we may rewrite (A.34) as

xm+C(0) [ Am+0l

'[IWcj-nllfmel"'lz IH +||]

Q]>’

f: gle+j)X+1 ,,,H_j] m=0. (A.39)

Hence, for m =1

(63

T[xm-i-c(o) - X 0)] | Am+cl I Am—1+c|
1

m—l+C(

= (I A~m+l| 'Amwl-%ci - |A~ml ‘Am+cI)
c—1 . )
SWNICTZN
J=
+(| ~m+1l lAm—l+c| - li}ml IAm+c|)

c—1

C 2 gV ZE]
J=

+g(m+ )N V|| Apeyse
m-—1 .

+ > g(j+ )N 1*e
j=0

| r}m-—j‘ ‘ Am+c|)'
(A.40)

(| I7m+1-j| | Am—-l+c| -

It can be shown by induction on m [and by using (A.30)] that
form>1land j=1,2,---,m—-1lorm=1and j=0,
| “éfm+1l | I‘;'m—-jl - | /Imf | I7m+1—j!

= XlBl(Cﬂ)m—l—j)\m_” f)1 | |A1I . (A'41)

By applying (A.26) and (A.41) to the first two terms on the
right-hand side of (A.40), as well as (A.29) and (A.41) to the

last one, it is straightforward to reduce (A.40) for m = 1 to

¢4
0)] I Am+c| | Am-l+c|

')_\: [ m+c(0

m l+c(

= NGBy (ep)™” mmng (/)N

'('Yc—ll!mj—ll IAclH 1')
+g(m + )N A | Amiscl

m—1

+ 2_: g(j+ NB(cp)™ TN e

(M Yoo | 1A,
_[ IAc—ll + | Yc-—ll] |K;|)
Step 3: Proof of (A.18).
We are now in position to prove (A.18). For ¢ = 1, it is
seen from (A.33) and (A.42) that (A.18) is true.

For ¢ = 2, it follows from (A.33) and (A.42) that the
relation

cgg(j)%j'l(l

(A.42)

Yo il IWE ] = 14011 Z101)

(e - 1!

N Z e(N—= TG KA (A43)
has to be proved in order to establish (A.18).
For ¢ = 2, this relation reads
|V I = AT Z1] = =] A
which is true since |Y;| =p, |Agl =1, A =a+ ]\

|W{| = o, and | Z{] = p
Now suppose that (A.43) holds for some fixed ¢, ¢ = 2.
Then

¢ c!
X . c+1—-j A
]glg(j) (J"'l)!yl | j~—l|

c—1
= Ng(cyeu| Ay | + hep ) g(J)N!
Jj=1

'(lAc—ll |Z£-1| -

On the other hand, using the recursions (A.20), (A.21),
(A.37), and (A.38), it follows that

| Yo [ IWLL ). (a.44)

;g(i)xf“(mcl‘lzﬂ SALZD
=% g(c)(culAd] - | X,])
c—-1
+)\C;L§;1g(j))\j_l

(e [N ZE0] = [ Yoy [ IWEL ). (A45)

Finally, by using (A.22) with k = c, it is seen that (A.44)
and (A.45) are equivalent, so that (A.43) holds for ¢ instead
of ¢ — 1, which concludes the proof. B
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The notation introduced in the proof of Lemma 4.2 will be
used in the remainder of this Appendix. '
Proof of Lemma 4.3: By using (A.24) and the identity

Xyl +c+ 1) =6,x,, . (m+c), it follows that the
condition C,,, m = 0, can be expressed as

A mie [A;_ I m+c
g())

i

Cp j=1 lAm+c| i=j

(A.46)

On the other hand, it is easily seen from the definition of the

matrices A, .., Y, and A, . that for m =0
cp

IAm+c| = )\l + E— |Am—l+cl
1

Cu
+(———_)\2)1Ym-]+c| (A47)
B

which implies, together with (A.20) and (A.21), that for
mz=1

cp
|Am+c! = >\I'Am—l+c| + B_l Am—-l+c| N (A48)
1
Repeated applications of (A.48) give for m = 1
cu\"™
Am cl =\ 57 Ac
el = [ 5] 140
m+c cu m+c—j
+N D (—) A, . (A.49)
j=c+1\ B

Note that (A.49) trivially holds for m = 0.
With (A.49) it is easily seen that (A.46) is equivalent to

g(m+1+c)

cu m mte ey )"H‘C—J
ol — A A — A
[(6) A + Z(B | r]

4

. c—1)!
< )\161 Z #m+c~jcm( - )

= (J_l)'IAJ—IIg(.])
(A m+c—j |
+>‘131j_2c:+1(0#) JlAj—l'g(j) (A-SO)
for m = 0.
Because « is such that
Y<g,<1 (A.51)

and generally [see (2.2)]

g(m + 1+ C) = \I’m+l_j+cg(j) (ASZ)
for j = c, it follows that for all m > 0
m+c c m+c—j
gm+1+¢) ¥ (_"_) A,
J=c+1 61
m+c ——
< anf;ﬂ(cn) 14, 1g()). (A.53)
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Further, (A.51) and (A.52) imply that

m
lim g(m) =0
mtoo 31"1

so that there must exist an M (that clearly depends on «),
0 < M < + o, such that for all m = M,

g(m+1+c)
T'Acl
1

(c—1)!
(-1

By combining (A.50), (A.53), and (A.54), we finally see that
C,, is satisfied for all m = M.

The proof is concluded by observing that such an M also
exists for « = 0, since 8, = 1 if & = 0 (cf. Section IV), and
since lim .., g(m) = 0. B

Lemma A.1: Let ¢ = 2 and define

<hB 2w 8- 1e()). (A54)
=

N Mo (a+ N bgocy),  ifm=1;

A, 1(by,c) = {c m+o—1( 0s Co) N

7 0> . = ’
- M, . . («a, by, c,), ifm=1,
Vm+l(b0’c0):= {b " 1( ° 0) if m =0:
(VR — VY,

Wcj;l(ao):= {MZ—Z(aO’ O!,a-{-)\)’ lfISJSC-—Z,

ao’ lfj = C — l,
. J . ) R
Zﬁ—l(ao) = {Mc—2(aOa /“Lc—l’/‘c—l)’ lf l'SJSc 2
Koot 1f./=C—1'

Then,
| M}]r.l+c—1| = | I/ch—l(aO) | | Am+1(b0’ CO) I
+1ZI_(ao) | | Vopsr(bgrco) | (A.55)

for l<sj<c-1, m=0, and for any constants a,, by,
and ¢,.

Proof: The proof is easily obtained by induction on m
(see [3]). |
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